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5 Transformation Between the Celestial and Terrestrial

Systems

The coordinate transformation to be used to transform from the terres-
trial reference system (TRS) to the celestial reference system (CRS) at
the epoch t of the observation can be written as:

[CRS] = Q(t)R(t)W (t) [TRS], (1)

where Q(t), R(t) and W (t) are the transformation matrices arising from
the motion of the celestial pole in the celestial system, from the rotation
of the Earth around the axis of the pole, and from polar motion respec-
tively. The frame as realized from the [TRS] by applying the transfor-
mations W (t) and then R(t) will be called “the intermediate reference
frame of epoch t.”

5.1 The Framework of IAU 2000 Resolutions

Several resolutions were adopted by the XXIVth General Assembly of
the International Astronomical Union (Manchester, August 2000) that
concern the transformation between the celestial and terrestrial reference
systems and are therefore to be implemented in the IERS procedures.
Such a transformation being also required for computing directions of
celestial objects in intermediate systems, the process to transform among
these systems consistent with the IAU resolutions is also provided at the
end of this chapter.
Resolution B1.3 specifies that the systems of space-time coordinates
as defined by IAU Resolution A4 (1991) for the solar system and the
Earth within the framework of General Relativity are now named the
Barycentric Celestial Reference System (BCRS) and the Geocentric Ce-
lestial Reference System (GCRS) respectively. It also provides a gen-
eral framework for expressing the metric tensor and defining coordinate
transformations at the first post-Newtonian level.
Resolution B1.6 recommends that, beginning on 1 January 2003, the IAU
1976 Precession Model and IAU 1980 Theory of Nutation be replaced
by the precession-nutation model IAU 2000A (MHB 2000 based on the
transfer functions of Mathews et al., (2002)) for those who need a model
at the 0.2 mas level, or its shorter version IAU 2000B for those who need
a model only at the 1 mas level, together with their associated celestial
pole offsets, published in this document.
Resolution B1.7 recommends that the Celestial Intermediate Pole (CIP)
be implemented in place of the Celestial Ephemeris Pole (CEP) on 1
January 2003 and specifies how to implement its definition through its
direction at J2000.0 in the GCRS as well as the realization of its motion
both in the GCRS and ITRS. Its definition is an extension of that of the
CEP in the high frequency domain and coincides with that of the CEP
in the low frequency domain (Capitaine, 2000).
Resolution B1.8 recommends the use of the “non-rotating origin” (NRO)
(Guinot, 1979) both in the GCRS and the ITRS and these origins are
designated as the Celestial Ephemeris Origin (CEO) and the Terrestrial
Ephemeris Origin (TEO). The “Earth Rotation Angle” is defined as the
angle measured along the equator of the CIP between the CEO and the
TEO. This resolution recommends that UT1 be linearly proportional
to the Earth Rotation Angle and that the transformation between the
ITRS and GCRS be specified by the position of the CIP in the GCRS,
the position of the CIP in the ITRS, and the Earth Rotation Angle. It is
recommended that the IERS takes steps to implement this by 1 January
2003 and that the IERS will continue to provide users with data and
algorithms for the conventional transformation.
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Following the recommendations above, this chapter of the IERS Con-
ventions provides the expressions for the implementation of the IAU
resolutions using the new transformation which is described in Resolu-
tion B1.8. It also provides the expressions which are necessary to be
compatible with the resolutions when using the conventional transfor-
mation. Numerical values contained in this chapter have been slightly
revised from earlier provisional values to ensure continuity of the IERS
products. Fortran subroutines implementing the transformations are
described towards the end of the chapter. More detailed explanations
about the relevant concepts, software and IERS products can be found
in IERS Technical Note 29 (Capitaine et al., 2002).

5.2 Implementation of IAU 2000 Resolutions

In order to follow Resolution B1.3, the celestial reference system, which
is designated here CRS, must correspond to the geocentric space coor-
dinates of the GCRS. IAU Resolution A4 (1991) specified that the rela-
tive orientation of barycentric and geocentric spatial axes in BCRS and
GCRS are without any time dependent rotation. This requires that the
geodesic precession and nutation be taken into account in the precession-
nutation model.

Concerning the time coordinates, IAU Resolution A4 (1991) defined
TCB and TCG of the BCRS and GCRS respectively, as well as an-
other time coordinate in the GCRS, Terrestrial Time (TT), which is the
theoretical counterpart of the realized time scale TAI+32.184 s and has
been re-defined by IAU resolution B1.9 (2000). See Chapter 10 for the
relationships between these time scales.

The parameter t, used in the following expressions, is defined by

t = (TT− 2000 January 1d 12h TT) in days/36525. (2)

This definition is consistent with IAU Resolution C7 (1994) which rec-
ommends that the epoch J2000.0 be defined at the geocenter and at the
date 2000 January 1.5 TT = Julian Date 2451545.0 TT.

In order to follow Resolution B1.6, the precession-nutation quantities
to be used in the transformation matrix Q(t) must be based on the
precession-nutation model IAU 2000A or IAU 2000B depending on the
required precision. In order to follow Resolution B1.7, the realized ce-
lestial pole must be the CIP. This requires an offset at epoch in the
conventional model for precession-nutation as well as diurnal and higher
frequency variations in the Earth’s orientation. According to this reso-
lution, the direction of the CIP at J2000.0 has to be offset from the pole
of the GCRS in a manner consistent with the IAU 2000A Precession-
Nutation Model. The motion of the CIP in the GCRS is realized by the
IAU 2000 model for precession and forced nutation for periods greater
than two days plus additional time-dependent corrections provided by
the IERS through appropriate astro-geodetic observations. The motion
of the CIP in the ITRS is provided by the IERS through astro-geodetic
observations and models including variations with frequencies outside
the retrograde diurnal band.

The realization of the CIP thus requires that the IERS monitor the
observed differences (reported as “celestial pole offsets”) with respect to
the conventional celestial position of the CIP in the GCRS based on the
IAU 2000 Precession-Nutation Model together with its observed offset
at epoch. It also requires that the motion of the CIP in the TRS be
provided by the IERS by observations taking into account a predictable
part specified by a model including the terrestrial motion of the pole
corresponding to the forced nutations with periods less than two days
(in the GCRS) as well as the tidal variations in polar motion. Two
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equivalent procedures were given in the IERS Conventions (McCarthy,
1996) for the coordinate transformation from the TRS to the CRS. The
classical procedure, which was described in detail as option 1, makes use
of the equinox for realizing the intermediate reference frame of date t.
It uses apparent Greenwich Sidereal Time (GST) in the transformation
matrix R(t) and the classical precession and nutation parameters in the
transformation matrix Q(t).

The second procedure, which was described in detail as option 2, makes
use of the “non-rotating origin” to realize the intermediate reference
frame of date t. It uses the “Earth Rotation Angle,” originally referred
to as “stellar angle” in the transformation matrix R(t), and the two
coordinates of the celestial pole in the CRS (Capitaine, 1990) in the
transformation matrix Q(t).

Resolutions B1.3, B1.6 and B1.7 can be implemented in any of these pro-
cedures if the requirements described above are followed for the space-
time coordinates in the geocentric celestial system, for the precession and
nutation model on which are based the precession and nutation quan-
tities used in the transformation matrix Q(t) and for the polar motion
used in the transformation matrix W (t).

On the other hand, only the second procedure can be in agreement with
Resolution B1.8, which requires the use of the “non-rotating origin” both
in the CRS and the TRS as well as the position of the CIP in the GCRS
and in the ITRS. However, the IERS must also provide users with data
and algorithms for the conventional transformation; this implies that the
expression of Greenwich Sidereal Time (GST) has to be consistent with
the new procedure.

The following sections give the details of this procedure and the stan-
dard expressions necessary to obtain the numerical values of the relevant
parameters at the date of the observation.

5.3 Coordinate Transformation consistent with the IAU 2000 Resolutions

In the following, R1, R2 and R3 denote rotation matrices with positive
angle about the axes 1, 2 and 3 of the coordinate frame. The posi-
tion of the CIP both in the TRS and CRS is provided by the x and y
components of the CIP unit vector. These components are called “coor-
dinates” in the following and their numerical expressions are multiplied
by the factor 1296000′′/2π in order to provide in arcseconds the value of
the corresponding “angles” with respect to the polar axis of the reference
system.

The coordinate transformation (1) from the TRS to the CRS corre-
sponding to the procedure consistent with Resolution B1.8 is expressed
in terms of the three fundamental components as given below (Capitaine,
1990)

W (t) = R3(−s′) ·R2(xp) ·R1(yp), (3)

xp and yp being the “polar coordinates” of the Celestial Intermediate
Pole (CIP) in the TRS and s′ being a quantity which provides the po-
sition of the TEO on the equator of the CIP corresponding to the kine-
matical definition of the NRO in the ITRS when the CIP is moving with
respect to the ITRS due to polar motion. The expression of s′ as a
function of the coordinates xp and yp is:

s′(t) = (1/2)
∫ t

t0

(xpẏp − ẋpyp) dt. (4)

The use of the quantity s′, which was neglected in the classical form
prior to 1 January 2003, is necessary to provide an exact realization of
the “instantaneous prime meridian.”
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R(t) = R3(−θ), (5)

θ being the Earth Rotation Angle between the CEO and the TEO at
date t on the equator of the CIP, which provides a rigorous definition of
the sidereal rotation of the Earth.

Q(t) = R3(−E) ·R2(−d) ·R3(E) ·R3(s), (6)

E and d being such that the coordinates of the CIP in the CRS are:

X = sin d cosE, Y = sin d sinE, Z = cos d, (7)

and s being a quantity which provides the position of the CEO on the
equator of the CIP corresponding to the kinematical definition of the
NRO in the GCRS when the CIP is moving with respect to the GCRS,
between the reference epoch and the epoch t due to precession and nu-
tation. Its expression as a function of the coordinates X and Y is (Cap-
itaine et al., 2000)

s(t) = −
∫ t

t0

X(t)Ẏ (t)− Y (t)Ẋ(t)
1 + Z(t)

dt− (σ0N0 − Σ0N0), (8)

where σ0 and Σ0 are the positions of the CEO at J2000.0 and the x-
origin of the GCRS respectively and N0 is the ascending node of the
equator at J2000.0 in the equator of the GCRS. Or equivalently, within
1 microarcsecond over one century

s(t) = −1
2
[X(t)Y (t)−X(t0)Y (t0)] +

∫ t

t0

Ẋ(t)Y (t)dt− (σ0N0 − Σ0N0). (9)

The arbitrary constant σ0N0 − Σ0N0, which had been conventionally
chosen to be zero in previous references (e.g. Capitaine et al., 2000),
is now chosen to ensure continuity with the classical procedure on 1
January 2003 (see expression (36)).
Q(t) can be given in an equivalent form directly involving X and Y as

Q(t) =

 1− aX2 −aXY X
−aXY 1− aY 2 Y
−X −Y 1− a(X2 + Y 2)

 ·R3(s), (10)

with a = 1/(1 + cos d), which can also be written, with an accuracy of
1 µas, as a = 1/2 + 1/8(X2 + Y 2). Such an expression of the transfor-
mation (1) leads to very simple expressions of the partial derivatives of
observables with respect to the terrestrial coordinates of the CIP, UT1,
and celestial coordinates of the CIP.

5.4 Parameters to be used in the Transformation

5.4.1 Schematic Representation of the Motion of the CIP

According to Resolution B1.7, the CIP is an intermediate pole separat-
ing, by convention, the motion of the pole of the TRS in the CRS into
two parts:

• the celestial motion of the CIP (precession/nutation), including all the
terms with periods greater than 2 days in the CRS (i.e. frequencies
between −0.5 counts per sidereal day (cpsd) and +0.5 cpsd),

• the terrestrial motion of the CIP (polar motion), including all the
terms outside the retrograde diurnal band in the TRS (i.e. frequencies
lower than −1.5 cpsd or greater than −0.5 cpsd).
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frequency in TRS
-3.5 -2.5 -1.5 -0.5 +0.5 +1.5 +2.5 (cpsd)

polar motion polar motion

frequency in CRS
-2.5 -1.5 -0.5 +0.5 +1.5 +2.5 +3.5 (cpsd)

nutation

5.4.2 Motion of the CIP in the ITRS

The standard pole coordinates to be used for the parameters xp and yp,
if not estimated from the observations, are those published by the IERS
with additional components to account for the effects of ocean tides and
for nutation terms with periods less than two days.

(xp, yp) = (x, y)IERS + (∆x,∆y)tidal + (∆x,∆y)nutation,
where (x, y)IERS are pole coordinates provided by the IERS,
(∆x,∆y)tidal are the tidal components, and (∆x,∆y)nutation are the
nutation components. The corrections for these variations are described
below.
Corrections (∆x,∆y)tidal for the diurnal and sub-diurnal variations in
polar motion caused by ocean tides can be computed using a routine
available on the website of the IERS Conventions (see Chapter 8). Ta-
ble 8.2 (from Ch. Bizouard), based on this routine, provides the am-
plitudes and arguments of these variations for the 71 tidal constituents
considered in the model. These subdaily variations are not part of the
polar motion values reported to and distributed by the IERS and are
therefore to be added after interpolation.
Recent models for rigid Earth nutation (Souchay and Kinoshita, 1997;
Bretagnon et al., 1997; Folgueira et al., 1998a; Folgueira et al., 1998b;
Souchay et al., 1999; Roosbeek, 1999; Bizouard et al., 2000; Bizouard et
al., 2001) include prograde diurnal and prograde semidiurnal terms with
respect to the GCRS with amplitudes up to∼ 15 µas in ∆ψ sin ε0 and ∆ε.
The semidiurnal terms in nutation have also been provided both for rigid
and nonrigid Earth models based on Hamiltonian formalism (Getino et
al., 2001, Escapa et al., 2002a and b). In order to realize the CIP as
recommended by Resolution B1.7, nutations with periods less than two
days are to be considered using a model for the corresponding motion
of the pole in the ITRS. The prograde diurnal nutations correspond
to prograde and retrograde long periodic variations in polar motion,
and the prograde semidiurnal nutations correspond to prograde diurnal
variations in polar motion (see for example Folgueira et al. 2001). A table
for operational use of the model for these variations (∆x,∆y)nutation

in polar motion for a nonrigid Earth has been provided by an ad hoc
Working Group (Brzeziński, 2002) based on nonrigid Earth models and
developments of the tidal potential (Brzeziński, 2001; Brzeziński and
Capitaine, 2002; Mathews and Bretagnon, 2002). The amplitudes of
the diurnal terms are in very good agreement with those estimated by
Getino et al. (2001). Components with amplitudes greater than 0.5 µas
are given in Table 5.1. The contribution from the triaxiality of the core to
the diurnal waves, while it can exceed the adopted cut-off level (Escapa
et al., 2002b; Mathews and Bretagnon, 2002), has not been taken into
account in the table due to the large uncertainty in the triaxiality of the
core (Dehant, 2002, private communication). The Stokes coefficients of
the geopotential are from the model JGM-3.
The diurnal components of these variations should be considered simi-
larly to the diurnal and semidiurnal variations due to ocean tides. They
are not part of the polar motion values reported to the IERS and dis-
tributed by the IERS and should therefore be added after interpolation.
The long-periodic terms, as well as the secular variation, are already
contained in the observed polar motion and need not be added to the
reported values.
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Table 5.1 Coefficients of sin(argument) and cos(argument) in (∆x,∆y)nutation due to tidal
gravitation (of degree n) for a nonrigid Earth. Units are µas; χ denotes GMST+ π
and the expressions for the fundamental arguments (Delaunay arguments) are given
by (40).

argument Doodson Period xp yp

n χ l l′ F D Ω number (days) sin cos sin cos
4 0 0 0 0 0 −1 055.565 6798.3837 −0.03 0.63 −0.05 −0.55
3 0 −1 0 1 0 2 055.645 6159.1355 1.46 0.00 −0.18 0.11
3 0 −1 0 1 0 1 055.655 3231.4956 −28.53 −0.23 3.42 −3.86
3 0 −1 0 1 0 0 055.665 2190.3501 −4.65 −0.08 0.55 −0.92
3 0 1 1 −1 0 0 056.444 438.35990 −0.69 0.15 −0.15 −0.68
3 0 1 1 −1 0 −1 056.454 411.80661 0.99 0.26 −0.25 1.04
3 0 0 0 1 −1 1 056.555 365.24219 1.19 0.21 −0.19 1.40
3 0 1 0 1 −2 1 057.455 193.55971 1.30 0.37 −0.17 2.91
3 0 0 0 1 0 2 065.545 27.431826 −0.05 −0.21 0.01 −1.68
3 0 0 0 1 0 1 065.555 27.321582 0.89 3.97 −0.11 32.39
3 0 0 0 1 0 0 065.565 27.212221 0.14 0.62 −0.02 5.09
3 0 −1 0 1 2 1 073.655 14.698136 −0.02 0.07 0.00 0.56
3 0 1 0 1 0 1 075.455 13.718786 −0.11 0.33 0.01 2.66
3 0 0 0 3 0 3 085.555 9.1071941 −0.08 0.11 0.01 0.88
3 0 0 0 3 0 2 085.565 9.0950103 −0.05 0.07 0.01 0.55
2 1 −1 0 −2 0 −1 135.645 1.1196992 −0.44 0.25 −0.25 −0.44
2 1 −1 0 −2 0 −2 135.655 1.1195149 −2.31 1.32 −1.32 −2.31
2 1 1 0 −2 −2 −2 137.455 1.1134606 −0.44 0.25 −0.25 −0.44
2 1 0 0 −2 0 −1 145.545 1.0759762 −2.14 1.23 −1.23 −2.14
2 1 0 0 −2 0 −2 145.555 1.0758059 −11.36 6.52 −6.52 −11.36
2 1 −1 0 0 0 0 155.655 1.0347187 0.84 −0.48 0.48 0.84
2 1 0 0 −2 2 −2 163.555 1.0027454 −4.76 2.73 −2.73 −4.76
2 1 0 0 0 0 0 165.555 0.9972696 14.27 −8.19 8.19 14.27
2 1 0 0 0 0 −1 165.565 0.9971233 1.93 −1.11 1.11 1.93
2 1 1 0 0 0 0 175.455 0.9624365 0.76 −0.43 0.43 0.76

Rate of secular polar motion (µas/y) due to the zero frequency tide
4 0 0 0 0 0 0 555.555 −3.80 −4.31

5.4.3 Position of the TEO in the ITRS

The quantity s′ is only sensitive to the largest variations in polar mo-
tion. Some components of s′ have to be evaluated, in principle, from the
measurements and can be extrapolated using the IERS data. Its main
component can be written as:

s′ = −0.0015(a2
c/1.2 + a2

a)t, (11)

ac and aa being the average amplitudes (in arc seconds) of the Chandle-
rian and annual wobbles, respectively in the period considered (Capitaine
et al., 1986). The value of s′ will therefore be less than 0.4 mas through
the next century, even if the amplitudes for the Chandlerian and annual
wobbles reach values of the order of 0.5′′ and 0.1′′ respectively. Using
the current mean amplitudes for the Chandlerian and annual wobbles
gives (Lambert and Bizouard, 2002):

s′ = −47 µas t. (12)

5.4.4 Earth Rotation Angle

The Earth Rotation Angle, θ, is obtained by the use of its conventional
relationship with UT1 as given by Capitaine et al. (2000),

θ(Tu) = 2π(0.7790572732640 + 1.00273781191135448Tu), (13)
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where Tu=(Julian UT1 date−2451545.0), and UT1=UTC+(UT1−UTC),
or equivalently

θ(Tu) = 2π(UT1 Julian day number elapsed since 2451545.0
+0.7790572732640 + 0.00273781191135448Tu), (14)

the quantity UT1−UTC to be used (if not estimated from the observa-
tions) being the IERS value.
This definition of UT1 based on the CEO is insensitive at the microarc-
second level to the precession-nutation model and to the observed celes-
tial pole offsets. Therefore, in the processing of observational data, the
quantity s provided by Table 5.2c must be considered as independent of
observations.

5.4.5 Motion of the CIP in the GCRS

Developments of the coordinates X and Y of the CIP in the GCRS,
valid at the microarcsecond level, based on the IERS 1996 model for
precession, nutation and pole offset at J2000.0 with respect to the pole
of the GCRS, have been provided by Capitaine et al. (2000). New
developments of X and Y based on the IAU 2000A or IAU 2000B model
(see the following section for more details) for precession-nutation and
on their corresponding pole offset at J2000.0 with respect to the pole of
the GCRS have been computed at the same accuracy (Capitaine et al.,
2003a). These developments have the following form:

X = −0.01661699′′ + 2004.19174288′′t− 0.42721905′′t2

−0.19862054′′t3 − 0.00004605′′t4 + 0.00000598′′t5

+
∑

i[(as,0)i sin(ARGUMENT) + (ac,0)i cos(ARGUMENT)]
+
∑

i[(as,1)it sin(ARGUMENT) + (ac,1)it cos(ARGUMENT)]
+
∑

i[(as,2)it
2 sin(ARGUMENT) + (ac,2)it

2 cos(ARGUMENT)]
+ · · · ,

(15)

Y = −0.00695078′′ − 0.02538199′′t− 22.40725099′′t2

+0.00184228′′t3 + 0.00111306′′t4 + 0.00000099′′t5

+
∑

i[(bc,0)i cos(ARGUMENT) + (bs,0)i sin(ARGUMENT)]
+
∑

i[(bc,1)it cos(ARGUMENT) + (bs,1)i t sin(ARGUMENT)]
+
∑

i[(bc,2)it
2 cos(ARGUMENT) + (bs,2)it

2 sin(ARGUMENT)]
+ · · · ,

(16)

the parameter t being given by expression (2) and ARGUMENT being a
function of the fundamental arguments of the nutation theory whose
expressions are given by (40) for the lunisolar ones and (41) for the
planetary ones.
These series are available electronically on the IERS Convention Cen-
ter website (Tables 5.2a and 5.2b) at <4>. tab5.2a.txt for the X
coordinate and at tab5.2b.txt for the Y coordinate. An extract from
Tables 5.2a and 5.2b for the largest non-polynomial terms in X and Y
is given hereafter.

The numerical values of the coefficients of the polynomial part of X
and Y are derived from the development as a function of time of the
precession in longitude and obliquity and pole offset at J2000.0 and the
amplitudes (as,j)i, (ac,j)i, (bc,j)i,(bs,j)i for j = 0, 1, 2, ... are derived
from the amplitudes of the precession and nutation series. The ampli-
tudes (as,0)i, (bc,0)i of the sine and cosine terms in X and Y respectively
are equal to the amplitudes Ai × sin ε0 and Bi of the series for nutation

4ftp://maia.usno.navy.mil/conv2000/chapter5/
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Extract from Tables 5.2a and 5.2b (available at <4>) for the largest non-polynomial terms in the
development (15) for X(t) (top part) and (16) for Y (t) (bottom part) compatible with IAU 2000A
Precession-Nutation Model (unit µas). The expressions for the fundamental arguments appearing in
columns 4 to 17 are given by (40) and (41).
i (as,0)i (ac,0)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 −6844318.44 1328.67 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −523908.04 −544.76 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 −90552.22 111.23 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 82168.76 −27.64 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 58707.02 470.05 0 1 0 0 0 0 0 0 0 0 0 0 0 0

.....
i (as,1)i (ac,1)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1307 −3328.48 205833.15 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1308 197.53 12814.01 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
1309 41.19 2187.91 0 0 2 0 2 0 0 0 0 0 0 0 0 0
.....
i (bs,0)i (bc,0)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 1538.18 9205236.26 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −458.66 573033.42 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 137.41 97846.69 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 −29.05 −89618.24 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 −17.40 22438.42 0 1 2 −2 2 0 0 0 0 0 0 0 0 0

.....
i (bs,1)i (bc,1)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

963 153041.82 878.89 0 0 0 0 1 0 0 0 0 0 0 0 0 0
964 11714.49 −289.32 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
965 2024.68 −50.99 0 0 2 0 2 0 0 0 0 0 0 0 0 0
.....

in longitude × sin ε0 and obliquity, except for a few terms in each co-
ordinate X and Y which contain a contribution from crossed-nutation
effects. The coordinates X and Y contain Poisson terms in t sin, t cos,
t2 sin, t2 cos, ... which originate from crossed terms between precession
and nutation.
The contributions (in µas) to expressions (15) and (16) from the frame
biases are

dX = −16617.0− 1.6 t2 + 0.7 cos Ω,
dY = −6819.2− 141.9 t+ 0.5 sinΩ, (17)

the first term in each coordinate being the contribution from the celestial
pole offset at J2000.0 and the following ones from the equinox offset at
J2000.0 also called “frame bias in right ascension.”
The celestial coordinates of the CIP, X and Y , can also be obtained at
each time t as a function of the precession and nutation quantities pro-
vided by the IAU 2000 Precession-Nutation Model. The developments
to be used for the precession quantities and for the nutation angles re-
ferred to the ecliptic of date are described in the following section and a
subroutine is available for the computation.
The relationships between the coordinates X and Y and the precession-
nutation quantities are (Capitaine, 1990):

X = X̄ + ξ0 − dα0 Ȳ ,
Y = Ȳ + η0 + dα0 X̄,

(18)

where ξ0 and η0 are the celestial pole offsets at the basic epoch J2000.0
and dα0 the right ascension of the mean equinox of J2000.0 in the CRS.
(See the numbers provided below in (19) and (28) for these quantities.)
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The mean equinox of J2000.0 to be considered is not the “rotational dy-
namical mean equinox of J2000.0” as used in the past, but the “inertial
dynamical mean equinox of J2000.0” to which the recent numerical or
analytical solutions refer. The latter is associated with the ecliptic in
the inertial sense, which is the plane perpendicular to the vector angular
momentum of the orbital motion of the Earth-Moon barycenter as com-
puted from the velocity of the barycenter relative to an inertial frame.
The rotational equinox is associated with the ecliptic in the rotational
sense, which is perpendicular to the vector angular momentum computed
from the velocity referred to the rotating orbital plane of the Earth-Moon
barycenter. (The difference between the two angular momenta is the an-
gular momentum associated with the rotation of the orbital plane.) See
Standish (1981) for more details. The numerical value for dα0 as derived
from Chapront et al. (2002) to be used in expression (18) is

dα0 = (−0.01460± 0.00050)′′. (19)

Quantities X̄ and Ȳ are given by:

X̄ = sinω sinψ,
Ȳ = − sin ε0 cosω + cos ε0 sinω cosψ (20)

where ε0 (= 84381.448′′) is the obliquity of the ecliptic at J2000.0, ω is
the inclination of the true equator of date on the fixed ecliptic of epoch
and ψ is the longitude, on the ecliptic of epoch, of the node of the true
equator of date on the fixed ecliptic of epoch; these quantities are such
that

ω = ωA + ∆ε1; ψ = ψA + ∆ψ1, (21)

where ψA and ωA are the precession quantities in longitude and obliquity
(Lieske et al., 1977) referred to the ecliptic of epoch and ∆ψ1, ∆ε1 are
the nutation angles in longitude and obliquity referred to the ecliptic
of epoch. (See the numerical developments provided for the precession
quantities in (30) and (31).) ∆ψ1, ∆ε1 can be obtained from the nutation
angles ∆ψ, ∆ε in longitude and obliquity referred to the ecliptic of date.
The following formulation from Aoki and Kinoshita (1983) has been
verified to provide an accuracy better than one microarcsecond after one
century:

∆ψ1 sinωA = ∆ψ sin εA cosχA −∆ε sinχA,
∆ε1 = ∆ψ sin εA sinχA + ∆ε cosχA,

(22)

ωA and εA being the precession quantities in obliquity referred to the
ecliptic of epoch and the ecliptic of date respectively and χA the plane-
tary precession along the equator (Lieske et al., 1977).

As VLBI observations have shown that there are deficiencies in the IAU
2000A of the order of 0.2 mas (Mathews et al., 2002), the IERS will con-
tinue to publish observed estimates of the corrections to the IAU 2000
Precession-Nutation Model. The observed differences with respect to
the conventional celestial pole position defined by the models are mon-
itored and reported by the IERS as “celestial pole offsets.” Such time
dependent offsets from the direction of the pole of the GCRS must be
provided as corrections δX and δY to the X and Y coordinates. These
corrections can be related to the current celestial pole offsets δψ and δε
using the relationship (20) betweenX and Y and the precession-nutation
quantities and (22) for the transformation from ecliptic of date to eclip-
tic of epoch. The relationship can be written with one microarcsecond
accuracy for one century:

δX = δψ sin εA + (ψA cos ε0 − χA)δε,
δY = δε− (ψA cos ε0 − χA)δψ sin εA.

(23)
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These observed offsets include the contribution of the Free Core Nuta-
tion (FCN) described in sub-section 5.5.1 on the IAU 2000 Precession-
Nutation Model. Using these offsets, the corrected celestial position of
the CIP is given by

X = X(IAU 2000) + δX, Y = Y (IAU 2000) + δY. (24)

This is practically equivalent to replacing the transformation matrix Q
with the rotation

Q̃ =

( 1 0 δX
0 1 δY

−δX −δY 1

)
QIAU, (25)

where QIAU represents the Q(t) matrix based on the IAU 2000 Preces-
sion-Nutation Model.

5.4.6 Position of the CEO in the GCRS

The numerical development of s compatible with the IAU 2000A Preces-
sion-Nutation Model as well as the corresponding celestial offset at
J2000.0 has been derived in a way similar to that based on the IERS
Conventions 1996 (Capitaine et al., 2000). It results from the expression
for s (8) using the developments of X and Y as functions of time given
by (15) and (16) (Capitaine et al., 2003a). The numerical development
is provided for the quantity s + XY/2, which requires fewer terms to
reach the same accuracy than a direct development for s.

The constant term for s, which was previously chosen so that
s(J2000.0) = 0, has now been fit (Capitaine et al., 2003b) in order to
ensure continuity of UT1 at the date of change (1 January 2003) consis-
tent with the Earth Rotation Angle (ERA) relationship and the current
VLBI procedure for estimating UT1 (see (36)).

The complete series for s + XY/2 with all terms larger than 0.1 µas
is available electronically on the IERS Convention Center website at
tab5.2c.txt and the terms larger than 0.5 µas over 25 years in the de-
velopment of s are provided in Table 5.2c with microarcsecond accuracy.

Table 5.2c Development of s(t) compatible with IAU 2000A Precession-Nutation
Model: all terms exceeding 0.5 µas during the interval 1975–2025 (unit µas).

s(t) = −XY/2 + 94 + 3808.35t− 119.94t2 − 72574.09t3 +
∑

k Ck sinαk

+1.71t sinΩ + 3.57t cos 2Ω + 743.53t2 sinΩ + 56.91t2 sin(2F − 2D + 2Ω)
+9.84t2 sin(2F + 2Ω)− 8.85t2 sin 2Ω

Argument αk Amplitude Ck

Ω −2640.73
2Ω −63.53
2F − 2D + 3Ω −11.75
2F − 2D + Ω −11.21
2F − 2D + 2Ω +4.57
2F + 3Ω −2.02
2F + Ω −1.98
3Ω +1.72
l′ + Ω +1.41
l′ − Ω +1.26
l + Ω +0.63
l − Ω +0.63
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5.5 IAU 2000A and IAU 2000B Precession-Nutation Model

5.5.1 Description of the Model

The IAU 2000A Precession-Nutation Model has been adopted by the IAU
(Resolution B1.6) to replace the IAU 1976 Precession Model (Lieske et
al., 1977) and the IAU 1980 Theory of Nutation (Wahr, 1981; Seidel-
mann, 1982). See Dehant et al. (1999) for more details. This model,
developed by Mathews et al. (2002), is based on the solution of the lin-
earized dynamical equation of the wobble-nutation problem and makes
use of estimated values of seven of the parameters appearing in the the-
ory, obtained from a least-squares fit of the theory to an up-to-date
precession-nutation VLBI data set (Herring et al., 2002). The nutation
series relies on the Souchay et al. (1999) Rigid Earth nutation series,
rescaled by 1.000012249 to account for the change in the dynamical el-
lipticity of the Earth implied by the observed correction to the lunisolar
precession of the equator. The nonrigid Earth transformation is the
MHB2000 model of Mathews et al. (2002) which improves the IAU 1980
Theory of Nutation by taking into account the effect of mantle anelas-
ticity, ocean tides, electromagnetic couplings produced between the fluid
outer core and the mantle as well as between the solid inner core and
fluid outer core (Buffett et al., 2002) and the consideration of nonlinear
terms which have hitherto been ignored in this type of formulation.
The resulting nutation series includes 678 lunisolar terms and 687 plan-
etary terms which are expressed as “in-phase” and “out-of-phase” com-
ponents with their time variations (see expression (29)). It provides the
direction of the celestial pole in the GCRS with an accuracy of 0.2 mas.
It includes the geodesic nutation contributions to the annual, semiannual
and 18.6-year terms to be consistent with including the geodesic preces-
sion pg in the precession model and so that the BCRS and GCRS are
without any time-dependent rotation. The IAU 1976 Precession Model
uses pg = 1.92′′/c and the theoretical geodesic nutation contribution
(Fukushima, 1991) used in the MHB model (Mathews et al., 2002) is, in
µas, for the nutations in longitude ∆ψg and obliquity ∆εg

∆ψg = −153 sin l′ − 2 sin 2l′ + 3 sinΩ,
∆εg = 1 cos Ω, (26)

where l′ is the mean anomaly of the Sun and Ω the longitude of the
ascending node of the Moon. On the other hand, the FCN, being a free
motion which cannot be predicted rigorously, is not considered a part of
the IAU 2000A model.
The IAU 2000 nutation series is associated with improved numerical
values for the precession rate of the equator in longitude and obliquity,
which correspond to the following correction to the IAU 1976 precession:

δψA = (−0.29965± 0.00040)′′/c,
δωA = (−0.02524± 0.00010)′′/c, (27)

as well as with the following offset (originally provided as frame bias
in dψbias and dεbias) of the direction of the CIP at J2000.0 from the
direction of the pole of the GCRS:

ξ0 = (−0.0166170± 0.0000100)′′,
η0 = (−0.0068192± 0.0000100)′′. (28)

The IAU 2000 Nutation Model is given by a series for nutation in longi-
tude ∆ψ and obliquity ∆ε, referred to the mean ecliptic of date, with t
measured in Julian centuries from epoch J2000.0:

∆ψ =
∑N

i=1(Ai +A′it) sin(ARGUMENT) + (A′′i +A′′′i t) cos(ARGUMENT),

∆ε =
∑N

i=1(Bi +B′
it) cos(ARGUMENT) + (B′′

i +B′′′
i t) sin(ARGUMENT).

(29)
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More details about the coefficients and arguments of these series (see
extract of the Tables 5.3a and 5.3b below) will be given in section 5.8.
These series are available electronically on the IERS Convention Cen-
ter website, for the lunisolar and planetary components, respectively at
tab5.3a.txt and tab5.3b.txt.

Extract from Tables 5.3a (lunisolar nutations) and 5.3b (planetary nutations) (available at <4>) pro-
viding the largest components for the “in-phase” and “out-of-phase” terms in longitude and obliquity.
Units are mas and mas/c for the coefficients and their time variations respectively. Periods are in
days.
l l′ F D Ω Period Ai A′i Bi B′

i A′′i A′′′i B′′
i B′′′

i

0 0 0 0 1 -6798.383 -17206.4161 -17.4666 9205.2331 0.9086 3.3386 0.0029 1.5377 0.0002
0 0 2 -2 2 182.621 -1317.0906 -0.1675 573.0336 -0.3015 -1.3696 0.0012 -0.4587 -0.0003
0 0 2 0 2 13.661 -227.6413 -0.0234 97.8459 -0.0485 0.2796 0.0002 0.1374 -0.0001
0 0 0 0 2 -3399.192 207.4554 0.0207 -89.7492 0.0470 -0.0698 0.0000 -0.0291 0.0000
0 1 0 0 0 365.260 147.5877 -0.3633 7.3871 -0.0184 1.1817 -0.0015 -0.1924 0.0005
0 1 2 -2 2 121.749 -51.6821 0.1226 22.4386 -0.0677 -0.0524 0.0002 -0.0174 0.0000
1 0 0 0 0 27.555 71.1159 0.0073 -0.6750 0.0000 -0.0872 0.0000 0.0358 0.0000
0 0 2 0 1 13.633 -38.7298 -0.0367 20.0728 0.0018 0.0380 0.0001 0.0318 0.0000
1 0 2 0 2 9.133 -30.1461 -0.0036 12.9025 -0.0063 0.0816 0.0000 0.0367 0.0000
0 -1 2 -2 2 365.225 21.5829 -0.0494 -9.5929 0.0299 0.0111 0.0000 0.0132 -0.0001

Period Longitude Obliquity
l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA Ai A′′i Bi B′′

i

0 0 1 -1 1 0 0 -1 0 -2 5 0 0 0 311921.26 -0.3084 0.5123 0.2735 0.1647
0 0 0 0 0 0 0 0 0 -2 5 0 0 1 311927.52 -0.1444 0.2409 -0.1286 -0.0771
0 0 0 0 0 0 -3 5 0 0 0 0 0 2 2957.35 -0.2150 0.0000 0.0000 0.0932
0 0 1 -1 1 0 -8 12 0 0 0 0 0 0 -88082.01 0.1200 0.0598 0.0319 -0.0641
0 0 0 0 0 0 0 0 0 2 0 0 0 2 2165.30 -0.1166 0.0000 0.0000 0.0505
0 0 0 0 0 0 0 4 -8 3 0 0 0 0 -651391.30 -0.0462 0.1604 0.0000 0.0000
0 0 0 0 0 0 1 -1 0 0 0 0 0 0 583.92 0.1485 0.0000 0.0000 0.0000
0 0 0 0 0 0 0 8 -16 4 5 0 0 0 34075700.82 0.1440 0.0000 0.0000 0.0000
0 0 0 0 0 0 0 1 0 -1 0 0 0 0 398.88 -0.1223 -0.0026 0.0000 0.0000
0 0 0 0 1 0 0 -1 2 0 0 0 0 0 37883.60 -0.0460 -0.0435 -0.0232 0.0246

The IAU 2000A subroutine, provided by T. Herring, is available elec-
tronically on the IERS Convention Center website at <5>.
It produces the quantities to implement the IAU 2000A Precession-
Nutation Model based on the MHB 2000 model: nutation in longitude
and obliquity, plus the contribution of the corrections to the IAU 1976
precession rates, plus the frame bias dψbias and dεbias in longitude and
obliquity. The “total nutation” includes all components with the excep-
tion of the free core nutation (FCN). The software can also be used to
model the expected FCN based on the most recent astronomical obser-
vations.
As recommended by Resolution B1.6, an abridged model, designated
IAU 2000B, is available for those who need a model only at the 1 mas
level. Such a model has been developed by McCarthy and Luzum (2003).
It includes fewer than 80 lunisolar terms plus a bias to account for the
effect of the planetary terms in the time period under consideration.
It provides the celestial pole motion with an accuracy that does not
result in a difference greater than 1 mas with respect to that of the IAU
2000A model during the period 1995–2050. The IAU 2000B subroutine is
available electronically on the IERS Convention Center website at <6>.

5ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.f
6ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000B.f
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5.5.2 Precession Developments compatible with the IAU2000 Model

The numerical values for the precession quantities compatible with the
IAU 2000 Precession-Nutation Model can be provided by using the devel-
opments (30) of Lieske et al. (1977) to which the estimated corrections
(27) δψA and δωA to the IAU 1976 precession have to be added.
The expressions of Lieske et al. (1977) are

ψA = 5038.7784′′t− 1.07259′′t2 − 0.001147′′t3,
ωA = ε0 + 0.05127′′t2 − 0.007726′′t3,
εA = ε0 − 46.8150′′t− 0.00059′′t2 + 0.001813′′t3,
χA = 10.5526′′t− 2.38064′′t2 − 0.001125′′t3 ,

(30)

and
ζA = 2306.2181′′t+ 0.30188′′t2 + 0.017998′′t3,
θA = 2004.3109′′t− 0.42665′′t2 − 0.041833′′t3,
zA = 2306.2181′′t+ 1.09468′′t2 + 0.018203′′t3,

(31)

with ε0 = 84381.448′′.
Due to their theoretical bases, the original development of the precession
quantities as function of time can be considered as being expressed in
TDB.
The expressions compatible with the IAU 2000A precession and nutation
are:

ψA = 5038.47875′′t− 1.07259′′t2 − 0.001147′′t3,
ωA = ε0 − 0.02524′′t+ 0.05127′′t2 − 0.007726′′t3,
εA = ε0 − 46.84024′′t− 0.00059′′t2 + 0.001813′′t3,
χA = 10.5526′′t− 2.38064′′t2 − 0.001125′′t3 ,

(32)

and the following series has been developed (Capitaine et al., 2003c) in
order to match the 4-rotation series for precession R1(−ε0) · R3(ψA) ·
R1(ωA) · R3(−χA), called the “canonical 4-rotation method,” to sub-
microarcsecond accuracy over 4 centuries:

ζA = 2.5976176′′ + 2306.0809506′′t+ 0.3019015′′t2 + 0.0179663′′t3

−0.0000327′′t4 − 0.0000002′′t5,
θA = 2004.1917476′′t− 0.4269353′′t2 − 0.0418251′′t3

−0.0000601′′t4 − 0.0000001′′t5,
zA = −2.5976176′′ + 2306.0803226′′t+ 1.0947790′′t2 + 0.0182273′′t3

+0.0000470′′t4 − 0.0000003′′t5.
(33)

Note that the new expression for the quantities ζA and zA include a con-
stant term (with opposite signs) which originates from the ratio between
the precession rate in ωA and in ψA sin ε0.
TT is used in the above expressions in place of TDB. The largest term
in the difference TDB−TT being 1.7 ms × sin l′, the resulting error in
the precession quantity ψA is periodic, with an annual period and an
amplitude of 2.7′′ × 10−9, which is significantly under the required mi-
croarcsecond accuracy.

5.6 Procedure to be used for the Transformation consistent with IAU 2000
Resolutions

There are several ways to implement the IAU 2000 Precession-Nutation
Model, and the precession developments to be used should be consis-
tent with the procedure being used. The subroutines available for the
different procedures are described below.
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Using the new paradigm, the complete procedure to transform from the
GCRS to the ITRS compatible with the IAU 2000A precession-nutation
is based on the expressions provided by (15) and (16) and Tables 5.2 for
the positions of the CIP and the CEO in the GCRS. These already con-
tain the proper expressions for the new precession-nutation model and
the frame biases. Another procedure can also be used for the computa-
tion of the coordinates X and Y of the CIP in the GCRS using expres-
sions (18) to (22). This must be based on the MHB 2000 nutation series,
on offsets at J2000.0 as well as on precession quantities ψA, ωA, εA, χA,
taking into account the corrections to the IAU 1976 precession rates.
(See expressions (32).)

In support of the classical paradigm, the IAU2000A subroutine provides
the components of the precession-nutation model including the contri-
butions of the correction to the IAU 1976 precession rates for ζA, θZ , zA

(see expressions (31)). Expressions (33) give the same angles but taking
into account the IAU 2000 corrections.

The recommended option for implementing the IAU 2000A/B model
using the classical transformation between the TRS and the GCRS is
to follow a rigorous procedure described by Wallace (in Capitaine et
al., 2002). This procedure is composed of the classical nutation matrix
using the MHB 2000 series, the precession matrix including four rotations
(R1(−ε0) ·R3(ψA) ·R1(ωA) ·R3(−χA)) using the updated developments
(32) for these quantities and a separate rotation matrix for the frame
bias.

In the case when one elects to continue using the classical expressions
based on the IAU 1976 Precession Model and IAU 1980 Theory of Nu-
tation, one should proceed as in the past as described in the IERS Con-
ventions 1996 (McCarthy, 1996) and then apply the corrections to the
model provided by the appropriate IAU 2000A/B software.

5.7 Expression of Greenwich Sidereal Time referred to the CEO

Greenwich Sidereal Time (GST) is related to the “Earth Rotation Angle”
θ referred to the CEO by the following relationship (Aoki and Kinoshita,
1983; Capitaine and Gontier, 1993) at a microarcsecond level:

GST = dT0 + θ +
∫ t

t0

˙̂
(ψA + ∆ψ1) cos(ωA + ∆ε1)dt− χA + ∆ψ cos εA −∆ψ1 cosωA, (34)

∆ψ1, ∆ε1, given by (22), being the nutation angles in longitude and
obliquity referred to the ecliptic of epoch and χA, whose development is
given in (32), the planetary precession along the equator.

The last four parts of (34) account for the accumulated precession and
nutation in right ascension from J2000.0 to the epoch t. GST−θ provides
the right ascension of the CEO measured from the equinox along the
moving equator, and dT0 is a constant term to be fitted in order to
ensure continuity in UT1 at the date of change (1 January 2003). The
numerical expression consistent with the IAU 2000 Precession-Nutation
Model has been obtained, using computations similar to those performed
for s and following a procedure, which is described below, to ensure
consistency at a microarcsecond level with the new transformation as
well as continuity in UT1 at the date of change (Capitaine et al., 2003b).
The series providing the expression for Greenwich Sidereal Time based
on the IAU2000A Precession-Nutation Model is available on the IERS
Convention Center website at tab5.4.txt.

Referring to the notations similar to those used in Table 5.2c, the nu-
merical expression is
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GST = 0.014506′′ + θ + 4612.15739966′′t+ 1.39667721′′t2
−0.00009344′′t3 + 0.00001882′′t4 + ∆ψ cos εA
−
∑

k C
′
k sinαk − 0.00000087′′t sinΩ.

(35)

The last two terms of GST, −
∑

k C
′
k sinαk − 0.87 µas t sinΩ, are

the complementary terms to be added to the current “equation of the
equinoxes,” ∆ψ cos εA, to provide the relationship between GST and θ
with microarcsecond accuracy. This replaces the two complementary
terms provided in the IERS Conventions 1996. A secular term similar
to that appearing in the quantity s is included in expression (35). This
expression for GST used in the classical transformation based on the
IAU 2000A precession-nutation ensures consistency at the microarcsec-
ond level after one century with the new transformation using expres-
sions (14) for θ, (15) and (16) for the celestial coordinates of the CIP
and Table 5.2c for s. The numerical values for the constant term dT0 in
GST which ensures continuity in UT1 at the date of change (1 January
2003) and for the corresponding constant term in s have been found to
be

dT0 = +14506µas,
s0 = +94µas. (36)

The change in the polynomial part of GST due to the correction in the
precession rates (27) corresponds to a change dGMST (see also Williams,
1994) in the current relationship between GMST and UT1 (Aoki et al.,
1982). Its numerical expression derived from expressions (35) for GST
and (13) for θ(UT1), minus the expression for GMST1982(UT1), can be
written in microarcseconds as

dGMST = 14506− 274950.12t+ 117.21t2 − 0.44t3 + 18.82t4. (37)

The new expression for GST clearly distinguishes between θ, which is
expressed as a function of UT1, and the accumulated precession-nutation
in right ascension, which is expressed in TDB (or, in practice, TT),
whereas the GMST1982(UT1) expression used only UT1. This gives rise
to an additional difference in dGMST of (TT−UT1) multiplied by the
speed of precession in right ascension. Using TT−TAI=32.184 s, this
can be expressed as: 47µas +1.5µas (TAI−UT1), where TAI−UT1 is
in seconds. On 1 January 2003, this difference will be about 94µas (see
Gontier in Capitaine et al., 2002), using an estimated value of 32.3 s for
TAI−UT1. This contribution for the effect of time scales is included in
the value for dT0 and s0.

5.8 The Fundamental Arguments of Nutation Theory

5.8.1 The Multipliers of the Fundamental Arguments of Nutation Theory

Each of the lunisolar terms in the nutation series is characterized by a set
of five integers Nj which determines the ARGUMENT for the term as a
linear combination of the five Fundamental Arguments Fj , namely the
Delaunay variables (`, `′, F,D,Ω): ARGUMENT =

∑5
j=1NjFj , where

the values (N1, · · · , N5) of the multipliers characterize the term. The Fj

are functions of time, and the angular frequency of the nutation described
by the term is given by

ω ≡ d(ARGUMENT)/dt. (38)

The frequency thus defined is positive for most terms, and negative
for some. Planetary nutation terms differ from the above only in that
ARGUMENT =

∑14
j=1N

′
jF

′
j , F6 to F13, as noted in Table 5.3, are the

mean longitudes of the planets Mercury to Neptune including the Earth
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(lMe, lV e, lE , lMa, lJu, lSa, lUr, lNe) and F14 is the general precession
in longitude pa.
Over time scales involved in nutation studies, the frequency ω is effec-
tively time-independent, and one may write, for the kth term in the
nutation series,

ARGUMENT = ωkt+ αk. (39)

Different tables of nutations in longitude and obliquity do not necessarily
assign the same set of multipliers Nj to a particular term in the nutation
series. The differences in the assignments arises from the fact that the
replacement (Nj=1,14) →−(Nj=1,14) accompanied by reversal of the sign
of the coefficient of sin(ARGUMENT) in the series for ∆ψ and ∆ε leaves
these series unchanged.

5.8.2 Development of the Arguments of Lunisolar Nutation

The expressions for the fundamental arguments of nutation are given by
the following developments where t is measured in Julian centuries of
TDB (Simon et al., 1994: Tables 3.4 (b.3) and 3.5 (b)) based on IERS
1992 constants and Williams et al. (1991) for precession.

F1 ≡ l = Mean Anomaly of the Moon

= 134.96340251◦ + 1717915923.2178′′t+ 31.8792′′t2

+0.051635′′t3 − 0.00024470′′t4,

F2 ≡ l′ = Mean Anomaly of the Sun

= 357.52910918◦ + 129596581.0481′′t− 0.5532′′t2

+0.000136′′t3 − 0.00001149′′t4,

F3 ≡ F = L− Ω
= 93.27209062◦ + 1739527262.8478′′t− 12.7512′′t2

−0.001037′′t3 + 0.00000417′′t4,

F4 ≡ D = Mean Elongation of the Moon from the Sun

= 297.85019547◦ + 1602961601.2090′′t− 6.3706′′t2

+0.006593′′t3 − 0.00003169′′t4,

F5 ≡ Ω = Mean Longitude of the Ascending Node of the Moon

= 125.04455501◦ − 6962890.5431′′t+ 7.4722′′t2

+0.007702′′t3 − 0.00005939′′t4

(40)

where L is the Mean Longitude of the Moon.

5.8.3 Development of the Arguments for the Planetary Nutation

Note that in the MHB 2000 code, simplified expressions are used for the
planetary nutation. The maximum difference in the nutation amplitudes
is less than 0.1µas.
The mean longitudes of the planets used in the arguments for the plan-
etary nutations are those provided by Souchay et al. (1999), based on
theories and constants of VSOP82 (Bretagnon, 1982) and ELP 2000
(Chapront-Touzé and Chapront, 1983) and developments of Simon et al.
(1994). Their developments are given below in radians with t in Julian
centuries.
In the original expressions, t is measured in TDB. However, TT can be
used in place of TDB as the difference due to TDB−TT is 0.9 mas × sin l′
for the largest effect in the nutation arguments, which produces a neg-
ligible difference (less than 10−2µas with a period of one year) in the
corresponding amplitudes of nutation.
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F6 ≡ lMe = 4.402608842 + 2608.7903141574× t,

F7 ≡ lV e = 3.176146697 + 1021.3285546211× t,

F8 ≡ lE = 1.753470314 + 628.3075849991× t,

F9 ≡ lMa = 6.203480913 + 334.0612426700× t,

F10 ≡ lJu = 0.599546497 + 52.9690962641× t,

F11 ≡ lSa = 0.874016757 + 21.3299104960× t,

F12 ≡ lUr = 5.481293872 + 7.4781598567× t,

F13 ≡ lNe = 5.311886287 + 3.8133035638× t,

F14 ≡ pa = 0.024381750× t+ 0.00000538691× t2.

(41)

5.9 Prograde and Retrograde Nutation Amplitudes

The quantities ∆ψ(t) sin ε0 and ∆ε(t) may be viewed as the components
of a moving two-dimensional vector in the mean equatorial frame, with
the positive X and Y axes pointing along the directions of increasing
∆ψ and ∆ε, respectively. The purely periodic parts of ∆ψ(t) sin ε0 and
∆ε(t) for a term of frequency ωk are made up of in-phase and out-of-
phase parts

(∆ψip(t) sin ε0, ∆εip(t)) = (∆ψip
k sin ε0 sin(ωkt+ αk), ∆εipk cos(ωkt+ αk)),

(∆ψop(t) sin ε0, ∆εop(t)) = (∆ψop
k sin ε0 cos(ωkt+ αk), ∆εop

k sin(ωkt+ αk)),
(42)

respectively. Each of these vectors may be decomposed into two uni-
formly rotating vectors, one constituting a prograde circular nutation
(rotating in the same sense as from the positive X axis towards the pos-
itive Y axis) and the other a retrograde one rotating in the opposite
sense. The decomposition is facilitated by factoring out the sign qk of
ωk from the argument, qk being such that

qkωk ≡ |ωk|. (43)

and writing
ωkt+ αk = qk(|ωk|t+ qkαk) ≡ qkχk, (44)

with χk increasing linearly with time. The pair of vectors above then
becomes

(∆ψip(t) sin ε0, ∆εip(t)) = (qk∆ψip
k sin ε0 sinχk, ∆εipk cosχk),

(∆ψop(t) sin ε0, ∆εop(t)) = (∆ψop
k sin ε0 cosχk, qk∆εop

k sinχk).
(45)

Because χk increases linearly with time, the mutually orthogonal unit
vectors (sinχk,− cosχk) and (cosχk, sinχk) rotate in a prograde sense
and the vectors obtained from these by the replacement χk → −χk,
namely (− sinχk,− cosχk) and (cosχk,− sinχk) are in retrograde ro-
tation. On resolving the in-phase and out-of-phase vectors in terms of
these, one obtains

(∆ψip(t) sin ε0, ∆εip(t)) = Apro ip
k (sinχk, − cosχk) +Aret ip

k (− sinχk, − cosχk),

(∆ψop(t) sin ε0, ∆εop(t)) = Apro op
k (cosχk, sinχk) +Aret op

k (cosχk, − sinχk),
(46)

where
Apro ip

k = 1
2 (qk∆ψip

k sin ε0 −∆εipk ),

Aret ip
k = − 1

2 (qk∆ψip
k sin ε0 + ∆εipk ),

Apro op
k = 1

2 (∆ψop
k sin ε0 + qk∆εop

k ),

Aret op
k = 1

2 (∆ψop
k sin ε0 − qk∆εop

k ).

(47)
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The expressions providing the corresponding nutation in longitude and
in obliquity from circular terms are

∆ψip
k = qk

sin ε0

(
Apro ip

k −Aret ip
k

)
,

∆ψop
k = 1

sin ε0

(
Apro op

k +Aret op
k

)
,

∆εipk = −
(
Apro ip

k +Aret ip
k

)
,

∆εop
k = qk

(
Apro op

k −Aret op
k

)
.

(48)

The contribution of the k-term of the nutation to the position of the
Celestial Intermediate Pole (CIP) in the mean equatorial frame is thus
given by the complex coordinate

∆ψ(t) sin ε0 + i∆ε(t) = −i
(
Apro

k eiχk +Aret
k e−iχk

)
, (49)

where Apro
k and Aret

k are the amplitudes of the prograde and retrograde
components, respectively, and are given by

Apro
k = Apro ip

k + iApro op
k , Aret

k = Aret ip
k + iAret op

k . (50)

The decomposition into prograde and retrograde components is impor-
tant for studying the role of resonance in nutation because any resonance
(especially in the case of the nonrigid Earth) affects Apro

k and Aret
k un-

equally.

In the literature (Wahr, 1981) one finds an alternative notation, fre-
quently followed in analytic formulations of nutation theory, that is:

∆ε(t) + i∆ψ(t) sin ε0 = −i
(
Apro −

k e−iχk +Aret −
k eiχk

)
, (51)

with

Apro −
k = Apro ip

k − iApro op
k , Aret −

k = Aret ip
k − iAret op

k . (52)

Further detail concerning this topic can be found in Defraigne et al.,
(1995) and Bizouard et al. (1998).

5.10 Procedures and IERS Routines for Transformations from ITRS to
GCRS

Fortran routines that implement the IAU 2000 transformations are pro-
vided on the IERS Conventions web page, which is at <7>.

The following routines are provided:
BPN2000 CEO-based intermediate-to-celestial matrix
CBPN2000 equinox-based true-to-celestial matrix
EE2000 equation of the equinoxes (EE)
EECT2000 EE complementary terms
ERA2000 Earth Rotation Angle
GMST2000 Greenwich Mean Sidereal Time
GST2000 Greenwich (apparent) Sidereal Time
NU2000A nutation, IAU 2000A
NU2000B nutation, IAU 2000B
POM2000 form polar-motion matrix
SP2000 the quantity s′
T2C2000 form terrestrial to celestial matrix
XYS2000A X,Y, s

7ftp://maia.usno.navy.mil/conv2000/chapter5
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The above routines are to a large extent self-contained, but in some
cases use simple utility routines from the IAU Standards of Fundamental
Astronomy software collection. This may be found at <8>.
The SOFA collection includes its own implementations of the IAU 2000
models, together with tools to facilitate their rigorous use.
Two equivalent ways to implement the IAU Resolutions in the transfor-
mation from ITRS to GCRS provided by expression (1) can be used,
namely (a) the new transformation based on the Celestial Ephemeris
Origin and the Earth Rotation Angle and (b) the classical transforma-
tion based on the equinox and Greenwich Sidereal Time. They are called
respectively “CEO-based” and “equinox-based” transformations in the
following.
For both transformations, the procedure is to form the various com-
ponents of expression (1), or their classical counterparts, and then to
combine these components into the complete terrestrial-to-celestial ma-
trix.
Common to all cases is generating the polar-motion matrix, W (t) in
expression (1), by calling POM2000. This requires the polar coordinates
xp, yp and the quantity s′; the latter can be estimated using SP2000.
The matrix for the combined effects of nutation, precession and frame
bias is Q(t) in expression (1). For the CEO-based transformation, this
is the intermediate-to-celestial matrix and can be obtained using the
routine BPN2000, given the CIP position X,Y and the quantity s that
defines the position of the CEO. The IAU 2000A X,Y, s are available by
calling the routine XYS2000A. In the case of the equinox-based transfor-
mation, the counterpart to matrix Q(t) is the true-to-celestial matrix.
To obtain this matrix requires the nutation components ∆ψ and ∆ε;
these can be predicted using the IAU 2000A model by means of the rou-
tine NU2000A. Faster but lower-accuracy predictions are available from
the NU2000B routine, which implements the IAU 2000B truncated model.
Once ∆ψ and ∆ε are known, the true-to-celestial matrix can be obtained
by calling the routine CBPN2000.
The intermediate component is the angle for Earth rotation that de-
fines matrix R(t) in expression (1). For the CEO-based transformation,
the angle in question is the Earth Rotation Angle, θ, which can be ob-
tained by calling the routine ERA2000. The counterpart in the case of
the equinox-based transformation is the Greenwich (apparent) Sidereal
Time. This can be obtained by calling the routine GST2000, given the
nutation in longitude, ∆ψ, that was obtained earlier.
The three components are then assembled into the final terrestrial-to-
celestial matrix by means of the routine T2C2000.
Three methods of applying the above scheme are set out below.

Method (1): CEO-based transformation consistent with
IAU 2000A precession-nutation

This uses the new (X,Y, s, θ) transformation, which is consistent with
IAU 2000A Precession-Nutation.
Having called SP2000 to obtain the quantity s′, and knowing the polar
motion xp, yp, the matrix W (t) can be obtained by calling POM2000. The
Earth Rotation Angle provided by expression (13) can be predicted with
ERA2000, as a function of UT1. The X,Y, s series, based on expressions
(15) and (16) for X and Y , the coordinates of the CIP, and on Table 5.2c
for the quantity s, that defines the position of the CEO, can be gener-
ated using the XYS2000A routine. (Note that this routine computes the
full series for s rather than the summary model in Table 5.2c.) The

8http://www.iau-sofa.rl.ac.uk
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matrix Q(t) that transforms from the intermediate system to the GCRS
coordinates can then be generated by means of BPN2000. The finished
terrestrial-to-celestial matrix is obtained by calling the T2C2000 routine,
specifying the polar-motion matrix, the Earth Rotation Angle and the
intermediate-to-celestial matrix.

Method (2A): the equinox-based transformation, using
IAU 2000A precession-nutation

An alternative is the classical, equinox-based, transformation, using the
IAU 2000A Precession-Nutation Model and the new IAU-2000-compa-
tible expression for GST.

As for Method 1, the first step is to use SP2000 and POM2000 to obtain
the matrix W (t), given xp, yp. Next, compute the nutation components
(lunisolar + planetary) by calling NU2000A. The Greenwich (apparent)
Sidereal Time is predicted by calling GST2000. This requires ∆ψ and TT
as well as UT1. The matrix that transforms from the true equator and
equinox of date to GCRS coordinates can then be generated by means of
CBPN2000. Finally, the finished terrestrial-to-celestial matrix is obtained
by calling the T2C2000 routine, specifying the polar-motion matrix, the
Greenwich Sidereal Time and the intermediate-to-celestial matrix.

Method (2B): the classical transformation, using
IAU 2000B precession-nutation

The third possibility is to carry out the classical transformation as for
Method 2A, but based on the truncated IAU 2000B Precession-Nutation
Model. Using IAU 2000B limits the accuracy to about 1 mas, but the
computations are significantly less onerous than when using the full IAU
2000A model.

The same procedure as in Method (2A) is used, but substituting NU2000B
for NU2000A. Depending on the accuracy requirements, further efficiency
optimizations are possible, including setting s′ to zero, omitting the
equation of the equinoxes complementary terms and even neglecting the
polar motion.

5.11 Notes on the new Procedure to Transform from ICRS to ITRS

The transformation from the GCRS to ITRS, which is provided in detail
in this chapter for use in the IERS Conventions, is also part of the more
general transformation for computing directions of celestial objects in
intermediate systems.

The procedure to be followed in transforming from the celestial (ICRS)
to the terrestrial (ITRS) systems has been clarified to be consistent with
the improving observational accuracy. See Figure 5.1 (McCarthy and
Capitaine (in Capitaine et al., 2002)) for a diagram of the new and old
procedures to be followed. As before, we make use of an intermediate
reference system in transforming to a terrestrial system. In this case we
call that system the Intermediate Celestial Reference System. (See also
Seidelmann and Kovalevsky (2002).) The Celestial Intermediate Pole
(CIP) that is realized by the IAU2000A/B Precession-Nutation model
defines its equator and the Conventional Ephemeris Origin replaces the
equinox.

The position in this reference system is called the intermediate right
ascension and declination and is analogous to the previous designation
of “apparent right ascension and declination.”
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Fig. 5.1 Process to transform from celestial to terrestrial systems. Differences with the past process
are shown on the right of the diagram.
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Defraigne, P., Dehant, V., and Pâquet, P., 1995, “Link between the
retrograde-prograde nutations and nutations in obliquity and lon-
gitude,” Celest. Mech. Dyn. Astr., 62, pp. 363–376.

Dehant, V., Arias, F., Bizouard, Ch., Bretagnon, P., Brzeziński, A.,
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