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Conjecture: 

stochastic = "bad"

Corollary:

not stochastic = not "bad"

Far-reaching consequences

Periodic and quasiperiodic physical processes can 
be modeled and hence reliably removed from the 
observational data

Stochastic perturbations are inherently not 
easily-modelable 



A Few Spin Dynamics Issues

 Variability of solar "constant"

variation ~ 0.1 percent

T ~ days

some evidence for variations on 
the order of minutes

Earth radiation pressure

visible

infrared

variability due to weather

complicated torques

spacecraft not protected by 
shield

optical ports

Fuel sloshing

Shield & flattop albedos

variable over time as materials 
age

spatial inhomogeneities

"Ice skater" effect (eclipses)?

Circulation of Sun around rotating 
frame stationary point

Variations in shield angle

nonuniform in circumference

slow variation over time?

fast variation — flapping?

Axis of shield misaligned with 
spacecraft spin axis

Geotail particle bursts

"wind" gusts?

potentials across spacecraft 
surfaces  → currents → 
magnetic torques

caused Echo spinup

Variation of solar radiation 
pressure as spacecraft orbits the 
Earth

Gravity gradient spin modulation

Magnetic torques

Magnetopause crossings

rare

short duration (~15 min) 
exposure to solar wind



Outline

Introduction

Some mention of relevant spin dynamics

Torque model development

Basic behavior

Solar irradiance variations

Solar irradiance fluctuation effects on spacecraft 
attitude

Simulated observations and measurement 
accuracy 



Introduction



Introduction

FAME satellite's precession will be driven by solar 
radiation pressure on the spacecraft's sun shield

Advantage: continuity of data, resulting in 
increased mission accuracy

SAO group covariance studies (FTM99-05)

gain a factor of 4 in rotation coherence in going from 6 
thruster firings per rotation to one firing per rotation

asymptotic limit: one order of magnitude accuracy gain

Potential problem: irradiance fluctuations

Stochastic, therefore potentially unmodelable

How can we reduce the impact from stochastic 
perturbations?

spin faster

reduce shield size

increase s/c mass or significantly alter the s/c mass 
distribution

Key Question: What is the character and 
magnitude of the effects of solar irradiance 
fluctuations on the spacecraft spin dynamics, and 
hence the effects on measurement accuracy?



Hipparcos Attitude Corrections

gas jet firings



Introduction (continued)

What answering the Key Question entails

Understanding of rigid body dynamics

Development of a useful torque model

Pressure field model(s)

Solar wind (not a problem in geosynchronous orbit)

Solar radiation pressure — three approaches:

constant magnitude (bad approx.)

model the fluctuations (very difficult solar physics problem)

incorporate observational data (best way to go)

Earth radiation pressure (not considered in this study)

Spacecraft solar shield model

Smooth "skirt", swept back by an adjustable angle to 
control the precession rate (Reasenberg 1997, 
FTM97-05)

Fully analytic exact solution for the torque on such a 
shield (Murison 1998, DDA Charlottesville, 
http://aa.usno.navy.mil/murison/talks/ )

Numerical program: exploration tool

Determine the effects on spacecraft attitude and 
measurement accuracy



Some Mention of 
Spin Dynamics



Spacecraft Spin Dynamics

Start with symmetric top equations of motion

Full dynamical problem: guiding center motion 
around the sun direction

Reasenberg (1999) and V. Slabinsky (1976) (now at 
USNO) both independently discovered this solution

Simplifications for this particular study:

Fix the Sun in place and ignore Earth's orbital motion

Ignore s/c orbit around Earth

Earth and lunar perturbations

eclipses

gravity gradient torques

etc., etc., etc.

ignore all smooth (and therefore modelable, and 
therefore removable from the data) perturbations

Simplified problem: spinning, symmetric top, with 
attached conical shield, embedded in a radiation 
pressure field

Ignore solar wind (magnetosphere protection)

Integrate pressure field over cylinder "top" and solar 
shield to get torques



Euler equations 
of motion for a 

rigid body

rigid body 
equations of 

motion

symmetric top 
equations of 

motion

1st order 
system of 

ODEs

Euler angle 
velocities in the 
body xyz frame

pressure 
torques

algebra

IX = IY

1. Equations of Motion



2. Torque Calculations (Cone & Top)

surface force 
components 

torque due to 
pressure field on 

flat top

torque due to 
pressure field on 

cone surface

torque integral in 
body xyz frame

torque integral in 
conical frame

force components 
integral in conical 

frame

coordinate transform

coordinate transform

¶¶
a d o

2

a d 0

r % ($)

(hard!)



1st order eqs 
of motion for 
Ωθ, Ωφ, Ωψ

2nd order 
system

2nd order 
system

SHM for Ωψ

substitute

Ø2Wh
Ø t2 l 0

d
dt

Wh >> Ww , Wy and P << 1

Ww l const

Ww = 0

fWy l (1 − b) Wh f (a, b, h, AC , AT , a) = 0

3. Precession Calculation
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I x
d
dt Wx + (Iz − Iy ) Wy W z − K x = 0

I y
d
dt Wy + (Ix − Iz ) Wx W z − K y = 0

Iz
d
dt Wz + (Iy − I x )W x Wy − Kz = 0

Ww + Wy + Wh =
Wx

Wy

Wz

=

dw
dt sin h sin y +

dy
dt cos h

dw
dt

cos h sin y −
dy
dt

sin h
dw
dt

cos y + dh
dt

Start with the Euler equations for a rigid body:

Write the components of ΩΩ along the rotation axes 
as projections onto the body xyz frame:

Substitute into the Euler equations to get

d2y

dt2 cosh + d2w

dt2 sinh siny +
Iz−Iy

Ix
dw
dt

2
cosy+

Ix−Iy+Iz
Ix

dh
dt

dw
dt sin y cosh

+
Ix+Iy−Iz

Ix

dw
dt cos y −

Ix−Iy+Iz
Ix

dh
dt

dy
dt sinh − Kx

Ix
= 0

−d2y

dt2 sin h + d2w

dt2 cos h siny + Ix−Iz
Iy

dw
dt

2
cos y+

Ix−Iy−Iz
Iy

dh
dt

dw
dt siny sinh

+
Ix+Iy−Iz

Iy
dw
dt cos y +

Ix−Iy−Iz
Iy

dh
dt

dy
dt cosh −

Ky

Iy
= 0

d2h
dt2 + d2w

dt2 cosy −
Ix−Iy

Iz

dw
dt

2
cosh sinh sin2y

+ 2
Ix−Iy

Iz sin2h −
Ix−Iy+Iz

Iz

dy
dt

dw
dt sin y +

Ix−Iy
Iz

dy
dt

2
cosh sinh − Kz

Iz
= 0

Equations of Motion



d2y
dt2 cosh + d2w

dt2 sinh siny+ (1−b) dh
dt

dw
dt − b dw

dt

2
cosy siny cosh

+ (1 +b) dw
dt cosy − (1 −b) dh

dt
dy
dt sinh − Kx

Ixy
= 0

− d2y
dt2 sinh+ d2w

dt2 cosh siny − (1− b) dh
dt

dw
dt −b dw

dt

2
cosy siny sinh

+ (1 +b) dw
dt cosy − (1 −b) dh

dt
dy
dt cosh −

Ky

Ixy
= 0

d2h
dt2 +

d2w
dt2 cosy −

dw
dt

dy
dt siny −

Kz

(1− b) Ixy
= 0

We have a "symmetric top", so let Ix=Iy=Ixy and

We find

The third equation is conservation of angular 
momentum along the symmetry axis:

b h
Ixy − I z

Ixy

d
dt

dh
dt +

dw
dt cosy = Kz

(1 − b) Ixy

Symmetric Top



Convert to a system of first-order ODEs:

dw
dt = Ww

dy
dt = Wy

dh
dt = Wh

siny d
dt Ww = [(1 − b) Wh − (1 + b) cos yWw ]Wy +

Kx sin h + Ky cos h
Ixy

d
dt Wy = b cos yWw

2 − (1 − b) Wh Ww siny +
Kx cosh − Ky sinh

I xy

siny d
dt Wh = [(1 + b cos2y)Ww − (1 − b) cos y Wh ] Wy

+
Kz sin y

(1 − b) Ixy
−

Kx sin h + Ky cos h
I xy

cos y

Symmetric Top (cont.)



Torque Model Development
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Force Components on Surface Element



x = q sin a cosg
y = q sin a sin g
z = h + a

tan a − q cos a

"Conical" coordinates:

Infinitesimal force components perpendicular to 
and tangent to the cone surface:

dFz

dFy
= P $ d S $ cosc $

(1 + A) cosc
(1 − A) sin c

A short calculation reveals that

where

dFq

dFg

dFa

= P $ d S $ cos x $
(1 − A) oq

(1 − A) og

(1 − A)oa − 2 Acosx

cos x h −(P̂ $ N̂) = − cos c

oq h
Pq

P og h
Pg

P oa h Pa

P

Force Due to Radiation Pressure



cos x = −oa = − cos a [cos g (cos h cos w − sin h cos y sin w)

− sin g (sin h cosw + cosh cos y sin w)] + sin a sin y sin w oX

− cos a [cos g (cos h sin w + sin h cos y cos w)
− sin g (sin h sin w − cos h cos y cos w)] − sin a sin y cos w oY

−[cos a (cos g sin h sin y + sin g cosh sin y ) + sin a cos y] oZ

From

we have (third component)

We can integrate over the conical surface:

The torque is then

oq

og

oa

= ‘(a ,g)−1 ‘(w, y, h)
oX

o Y

oZ

oX h
PX
P oY h

PY
P oZ h

PZ
P

F q

F g

F a

= P ¶
0

2 o ¶
f

f+S

cos x $
(1 − A C ) o q

(1 − A C ) o g

(1 − A C ) o a − 2 A C cos x
$ q sin a dq dg

K q

K g

K a

= ¶
0

2 o ¶
f

f+S

r %
(1 − A C ) o q

(1 − A C ) o g

(1 − A C ) o a − 2 A C cos x
$ cos x $ q sin a dq dg

Torque Due to Radiation Pressure



The radius vector is, in conical coordinates,

r = ‘(a ,g)−1

q sin a cos g
q sin a sin g
h + a

tan a − q cos a
=

−h cos a − a cos2a
sina + q

0
h sin a + a cos a

Perform the first integral to get

where

Kq

Kg

Ka

= P (b − a) ¶
0

2o
−B2og

B2oq + B1Q oa cos x − 2B 1AC cos x
B2(1 − AC ) Pg cos x

cos x dg

B1 h 1
2

1
sin2a

[U(a + b)cos a − 2
3 (a2 + ab + b2)]

B2 h 1
2

1
sin aQU(a + b)

Q h 1 − AC U h h sin a + a cos a

Torque Due to Radiation Pressure (cont)



Transform back to the cartesian body frame:

Kx

Ky

Kz

= P(b − a) ¶
0

2o

‘(a ,g)
−B2og

B2oq + B 1Q oa cos x − 2B1AC cos x
B2(1 − AC) Pg cos x

cos x dg

Perform the integral to get, finally, the total torque 
acting on the conical surface:

where

K x

K y

K z

= V

oX (cos ycosh sin v + sin hcos v)

+ oY (sin h sinv − cos y cos hcos v) − oZ cosh sin y
oX (cosh cosv − cosy sinh sin v)

+ oY (cosh sinv + cos y sin hcos v) + oZ sin h siny
0

V h oP (b − a) (−oX sin y sin v + oY siny cos v − oZ cos y)

$ [B1(3 + AC) cos a sin a − B2(2 sin2a − cos2a) ]

Torque Due to Radiation Pressure (cont)

B1 h 1
2

1
sin2a

[U(a + b)cos a − 2
3 (a2 + ab + b2)]

B2 h 1
2

1
sinaQU(a + b)

Q h 1 − AC U h h sin a + a cos a



The contribution to the "top" surface is just a 
special case of the cone formulation.  Hence, we 
find

where

K x

K y

K z

= W

oX (cos y cos h sinv + sinh cos v)

+ oY (sinh sinv − cos y cosh cosv) − oZ cos h sin y
oX (cos h cos v − cos y sin h sin v)

+ oY (cos h sin v + cosy sinh cosv) + oZ sinh siny
0

W h oPa2h (1 − AT)(−oX sin y sin w + oY sin y cos w − oZ cos y )

Torque Due to Radiation Pressure (cont)



Therefore, the equations of motion become

dw
dt = W w

dy
dt

= W y

dw
dt

= W w

sin y d
dt

W w = [(1 − b) Wh − (1 + b)cos y Ww] Wy + K1(a,b,h, a , AC, AT, w,y)
d
dt

Wy = b cosy Ww
2 − (1 − b) Wh W w sin y + K2(a,b,h, a , AC ,AT,w,y)

sin y d
dt

W h = [(1 + b cos2y) Ww − (1 − b) cos y W h] Wy + K3(a, b, h, a ,AC, AT, w,y)

K1(a, b,h, a , AC, AT , w, y) h G(a, b,h, a , AC, AT) $ g1(w, y)
K2(a, b,h, a , AC, AT , w, y) h G(a, b,h, a , AC, AT) $ g2(w, y)
K3(a, b,h, a , AC, AT , w, y) h G(a, b,h, a , AC, AT) $ g3(w, y)

g0(w, y) = − oX sin w sin y + oY sin y cosw − oZ cosy
g1(w, y) = g0(w, y) $ (oX cos w + oY sin w)
g2(w, y) = g0(w, y) $ (oX cos y sin w − oY cos y cosw − oZ sin y)
g3(w, y) = − g1(w, y) cos y

G(a,b, h, a , AC, AT) = GC(a, b,h,a ,AC) + GT(a, h, AT)

GC(a,b,h, a ,AC) = oP
Ixy

(b − a) (1 − AC + 2 AC cos2a)(h sina + a cos a) a + b
sina

− 1
3 (3 + AC) cos a a2 + a b + b2

sina
GT(a,h, AT) = oP

I xy
(1 − AT )a2h

The Equations of Motion



Basic Behavior



siny d2

dt2 Ww = −(1− b)2
Wh

2 Ww siny + (1− b)Wh K2(a,b,h,a ,AC, AT,w, y)
d2

dt2 Wy = −(1− b)2
Wh

2 Wy −(1 −b)Wh K1(a,b,h,a ,AC, AT,w, y)

siny d2

dt2 Wh = [(1− b)2
Wh

2 Ww siny − (1− b)Wh K2(a,b,h,a ,AC, AT,w, y)]cosy

Assume a fast-spinning craft.  Then
Differentiate, substitute, and perform a series 
expansion on Ωψ, Ωϕ, and P to get

From the first or third equations, we have

For a flat disk of uniform albedo A, this reduces to

which agrees with your average #10 business 
envelope.

Note dependencies:

area of shield

magnitude of pressure

cosine of sun angle

inverse of spin rate

Wh >> Ww ,Wy

Ww l
K2(a, b, h, a ,AC, AT, w, y)

(1 − b)Wh sin y

Ww l
(1− A)ob2 h
(1 − b) Ixy Wh

Pcosy

Fast Spin Approximation — Precession



From the second equation we have simple 
harmonic motion for Ωψ:

This is nutation.

Wy l A cos[(1 − b) Wh t] + B sin[(1 − b)W h t] −
K 1(a, b, h, a , AC, AT, w, y)

(1 − b)W h

The third term is constant for                            .  
This implies a small,  monotonic drift in the 
inclination angle ψ.  However, it is actually the first 
term in the expansion of a large-period oscillation.

Fast Spin Approximation — Nutation

oX , oY d 0, oZ d 1



(b− a)[(1 − AC + 2AC cos2a)(hsina + acosa)(a + b)
− 1

3 (3 + AC)(a2 + ab + b2) cosa ] + (1− AT)a2hsin a = 0

Precession null:

This is equivalent to

G(a, b, h, a , AC , AT) = 0

Cone Angle for Precession Nulling
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Nulling Cone Angle vs. h



Precession Period vs. (α,AC)

Shield angle will need to be adjustable in flight, at 
least at beginning of mission.
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ξ

Ω
Ωz

Ωϕ
ψ

Basic Behavior

Constant pressure field

Smooth precession

Constant sun angle ψ

Thump it, and it rings (nutation)

Angular velocity along spin axis is conserved

Angular velocity vector in the rotating 
spacecraft frame executes circular
 motion around the symmetry axis

Frequency

Radius 

Time-variable pressure field

Sun angle variations

variable-amplitude nutation

Precession variations

These variations result in "Pole wandering"

Spin (Ωz) unaffected, since for solar radiation there 
is no net torque component along the body z axis

Ww ≠
Pcosy

(1 − b)Wh

tann =
Ww siny

Wz + Ww cosy

Wz ! Ww cos y

d
dt

(Wh + Ww cosy) = d
dt Wz = 0



Solar Irradiance Variations



Solar Irradiance Variations

Irradiance variations 1978-1998

(most of the fuzz is real)



Solar Irradiance Variations (continued)

Stochastic at the 0.1 percent level

Cannot be measured accurately enough or with the 
required time resolution (a few minutes) from the 
ground

Existing satellite data (WIND, ACRIM I & II, etc.): 
not enough time resolution

SoHO/VIRGO to the rescue

Best accuracy of any instrument to date

1-minute time resolution

Problem: VIRGO team in intense competition 
against other SoHO instrument teams

Holy grail: solar g-mode oscillations

To get data, had to state our case all the way up the 
chain from American team members to the 
European VIRGO PI



Solar Irradiance Variations (continued)

Resolution: the VIRGO team is kind, trusting, and 
reasonable

We now have a full year of VIRGO 1-minute 
irradiance data



Solar Irradiance Variations (continued)

Characteristic irradiance variations

In general, power below 1 µHz is due to active 
regions.  

Most of the signal is at very low frequencies, around 
0.4-0.5 µHz (~23-30 days).  This corresponds to the 
solar rotation synodic period of ~27 days and 
represents the variations due to sunspot and plague 
regions rotating in and out of view.  

There is a significant surge of signal in the range 
2000-3000 µHz (~5 minutes).  This signal is from 
irradiance variations due to the 5-minute solar 
p-mode oscillations.  

The power in the region 10-100 µHz is due to 
supergranulation

The power in the region 80-1000 µHz is due to 
mesogranulation. 

The power in the region 800-3000 µHz is due to 
granulation.

See J. Pap et al., 1999, Adv. Space Res., in press.

High-order p-mode oscillations: coherence times of 
one to a few days (F. Varadi, 1999, private comm.)



Solar Irradiance Variations (continued)

SoHO/VIRGO power spectrum

frequency (µHz)



Solar Irradiance Fluctuation 
Effects on Spacecraft Attitude



Solar irradiance fluctuation effects 
on spacecraft attitude

2 µas

3.6 µas

Steady irradiance reference case



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

Reference case: check on conserved quantities

fractional change of spin 
along symmetry axis

fractional change of energy



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

Reference case: body-frame angular velocity

ξ

Ω
Ωz

Ωϕ
ψ

tann =
Ww siny

Wz + Ww cosy

symmetry pole

ξ



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

Irradiance fluctuations



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

Orientation differences from irradiance fluctuations



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

Power spectral density of sun angle ψ 

(1 − b) Wh



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

Power spectral density of sun angle ψ (log scale)

(1 − b) Wh

real power

bandpass power (mas)

5-10 0.9

10-20 2.0

20-30 7.0

40-min peak 63.3



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

body-frame angular velocity vector difference



Solar irradiance fluctuation effects 
on spacecraft attitude (continued)

body-frame angular velocity difference 
x-component PSD

Wh

b Wh



Simulated Observations



γ

∆γ

ε+∆ε

m
eridian through Sun

Simulated Observations

Installed arbitrary number of viewports (use 2), 
separated by a uniform angle (81.5 degrees)

"Detect" a star when it crosses a fiducial line 
segment on the focal plane

Project line segment onto sky

Observables:

time of detection

cross-scan location ε 

Effects of orientation fluctuation:

rotation of fiducial line, ∆γ   

cross-scan displacement shift, ∆ε 

these give rise to a timing error, ∆t 

Relation to integration variables (Euler angles 

θ,ψ,ϕ) is a simple problem in spherical trig.:

where k is azimuthal position of viewport 

tanc = tan ycosh
cosecosj = sin y sin b sinh + (sin(k − w)cosy sinh + cos(k − w)cosh)cosb
cosesinj = sin y sin b cos h + (sin(k − w) cosy cosh − cos(k − w) sinh)cosb
sin e = cosy sinb − sin(k − w) siny cosb



Simulated Observations (continued)

Hence, we may "cheat" and take a look at ∆ε and ∆t 
due to irradiance fluctuations

fluctuations events minus constant events



Simulated Observations (continued)
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Simulated Observations (continued)
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Simulated Observations (continued)
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Simulated Observations (continued)

Questions

Why the quasi-linear growth with time?

Why the θ-dependence of the cross-scan errors?

[to be continued...]
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